ST Questions 1, 3b

 What are the essential features of the device that would fulfill the ST goal?
 How does the program envision reaching solutions for the technological issues associated with the goal – especially those particular to the ST approach – NBI, magnets, etc.?

Brad Nelson, Tom Burgess, Charles Neumeyer, <u>Dave Rasmussen</u>, Paul Fogarty, Adam Carroll, Roger Stoller

> FESAC TAP meeting June 30 – July 2, 2008, DFW Airport

What is the ST goal?

Long Term ST Mission: To develop compact, high-beta burning plasma capability for use-inspired R&D (example: to simplify energy source configuration; make it smaller and cheaper)

ITER - Era Goal:

To produce a sustained plasma fusion environment of high heat flux and high neutron fluence to enable the R&D that establishes the knowledge base for an attractive fusion energy source.

ST goal - continued

Address Themes B (PMI) and C (Power) issues defined in the Greenwald Panel report, using

<u>A sustained plasma fusion environment (Q4c):</u> Wall load: ~1 MW/m² Fluence: ~ 3 MW-a/m² (for ITER era)

This can be done in parallel with ITER

Vision: ST CTF working example – a compact, high duty factor Volume Neutron Source

Essential features are driven by high duty factor – high reliability & maintainability

- Cu TF magnet post
- MIC startup solenoid
- Continuous NBI
- Super-X divertor
- Minimizing disruptions
- Extensive modularity
- Remote handling
- Ex-shield boundary hands-on access
- Large design margins
- Tradeoffs plus R&D leverage

Fluence determined by duty factor

How to progress toward high Duty Factor (30%)?

Duty Factor ~ MTBF (MTBF + MTTR)

ITER aims for \leq 3%; Demo needs \geq 60%

<u>Reliability</u> increases Mean-Time Between Failure (MTBF, "up-time"); <u>Maintainability</u> reduces Mean-Time To Repair/Replace (MTTR, "down-time")

Reliability

Reliability in this design is enhanced by:

- Simplifying design solutions
- Performing adequate R&D, testing, and prototyping of those solutions
- Including adequate margins in performance robustness

High maintainability enables fast reliability improvement

Single-turn Cu magnet reliability

- Conventional multi-turn coil set reliability is problematic and replacement of a TF or PF is extremely difficult.
 - Failures are usually electrical and S/C coils have high quench voltages (some kVs)
 - Significant shielding (1+ meters) is required to protect insulation and limit nuclear heating of S/C coils
- Single-turn Cu allows much lower voltages (10-15 V)
- Issues include:
 - High current, low voltage power supply system and bus (10 MA vs. 75 kA in ITER)
 - High current electrical joints/insulation
 - High current density (resistive heating)
 - Radiation damage (essentially no shielding)

High current power supply and feeder

High current (~ 10 MA) power supplies and feeder bus system expected to be more expensive

- To balance multiple supplies, current control and feedback (instead of voltage) is needed
- Dissipation in feeds must be minimized – short distance, HTSC? (0.6- GW, 140-kV line in Long Island)
- R&D: homopolar generator
 - Cheaper, works better at low voltage

ST-CTF Example

10-MA electrical joints at end of center core

Due to thermal and structural expansion of the center core, sliding joints may be needed.

Mechanical sliding joint – standard approach - Average current densities need to be reasonable (<1 kA/cm²), cooling is important

Liquid metal joint is intriguing possibility

- Need adequate seals
- Configure Lorentz (JxB) forces to retain liquid instead of expelling it
- Need rigorous prototyping & testing at full parameters

Central Cu core cooling and radiation damage

- Current density is expected to be high for compact device (5.3 kA/cm², ~ 150 W/cm³ in Glidcop)
- Nuclear heating adds ~20 W/cm³ at surface
- Will require careful optimization of cooling passages
- Must consider corrosion, radiation hardening
- Glidcop life 0.5 MW-a/m² (~ 5 dpa) measured (fission)
- CTF example 2 calendar year under full performance
- R&D: How to build? Life under 14-MeV neutrons?

Startup: solenoid option

- Multi-turn MIC design
- 1-cm solenoid (9% of CS cross section, 30% Cu) \rightarrow 0.4 Wb (0.5 MA) in 0.5-s operation
- Relatively high voltage compared to TF, only used during startup, avoiding radiation induced conductivity
- Ceramic powder (MgO) measured to retain insulating capability up to ~10 dpa (fission)
- Will require proper design for cooling and protection during DT burn
- Helium may be the best coolant (e.g., ~50% volume fraction)
- R&D: life under 14-MeV neutrons

Continuous NBI

- ITER NBI system allows cryogenic condensation of D,T in neutralizer in batch mode
- Need to extend operation to weeks
 - Will require continuously cryogenic condensation and regeneration
 - R&D for potentially improved solutions: lithium vapor jet neutralizer and particle pumping
- Lower energy (0.25 MeV) \rightarrow higher beam-let divergence
 - Increased divergence for given <u>source</u> and <u>accelerator</u> configuration – assume ~40A/m² (JAEA)
 - R&D to improve both

Divertor solutions

- Conventional divertor has very high heat (~40 MW/m², ∆ = 0.5 cm) and neutron fluxes
 - Major ITER R&D (~10 MW/m²) will benefit ST goal
- "Super-X" Divertor lowers heat flux by > 5-6x
 - Expanded SOL area
 - Longer connection length;
 increased radiation loss
 - More nuclear shielding
- Another R&D: power & particle control using liquid metal in lower single null

Minimizing disruptions in CTF

Biggest issue with current carrying devices, but:

- ST-CTF configuration has high ideal with-wall beta limit (βT ~ 35-40%)
- Possible to reduce disruption frequency by operating well below ideal limit (e.g., βT ~ 18%, βN ~ 3.8, qcyl ~ 3.7)
- Halo currents measured (MAST) to be much lower and more symmetric than normal A tokamak – lower mechanical loading and peaking of heat deposition
- R&D: stability control to minimize disruptions with substantial stability margins (Q4b)

High Maintainability via Modularity

Extensive modularity expedites remote handling:

- Large components with linear motion
- All welds external to shield boundary
- Parallel mid-plane/vertical RH operation

Remove lower blanket assembly

Remove lower PF coil

Extensive hot cell laboratories

Remote handling equipment includes hot cell laboratories for accompanying fusion nuclear sciences R&D

Compact design allows close-fitting shielding and ex-shield hands-on access, reducing MTTR

Mid-plane ports

- Minimize interference during remote handling (RH) operation
- Minimize MTTR for test modules
- Allow parallel operation among test modules and with vertical RH
- Allow flexible use & number of midplane ports for test
 blankets, NBI, RF and diagnostics

Minimizing module replacement times drives performance of remote handling equipment

Component	RH Class	Expected Frequency	RH Operation Time Estimate* (very preliminary, improvable by practicing)	
Divertor Module	1	~ At least annually	Upper module: ~ 4 weeks Upper and lower: ~ 6 weeks (assuming center stack not removed)	
Mid-plane Port Assemblies		~ Parallel operation	~ 3 weeks per port assembly	
Neutral Beam Ion Source			∼ 1 week per NBI	
In-vessel Inspection (viewing/metrology probe)	1	Frequent deployment	Single shift (8-hr) time target (deployed between plasma shots, at vacuum & temp.)	
Upper and Lower Breeder Blanket (to approach tritium self-sufficiency)	2	~ Several times in life of machine ~ In parallel with mid-plane operation	Upper: ~ 6 weeks Upper and Lower: ~ 9 weeks (need to retract mid-plane modules)	
Center Stack			~ 6 weeks	
Neutral Beam Internal Components			~ 2 to 4 weeks	
Vacuum Vessel Sector / TF Coil Return Conductor	3	Replacement not expected	Replacement must be possible and would require extended shutdown period	
Shield				

* Includes active remote maintenance time only. Actual machine shutdown period will be longer. Time estimates are rough approximations based on similar operations estimated for ITER and FIRE.

Plasma and engineering design allows substantial margins to increase operational reliability and MTBF

Physics Assumptions - Menard et al PPPL- 3779 (2003)					
Shape	$\kappa = 3.674 A^{-1/2} \delta = 0.4$				
MHD Safety Factor	$q_{cyl_min} = 1.19 + 7.8A^{-1} - 16.2A^{-2} + 12.2A^{-3}$				
Normalized Pressure	$\beta_{N_{max}} = 6.43 - 1.02 \text{A}$ (no-wall limit)				
Bootstrap Fraction	$f_{BS} = \frac{\beta_P K_{BS} p f^{0.25}}{\sqrt{A}} \qquad K_{BS} = 0.344 + 0.195A$ $pf = \int \left[1 - \left(\frac{r}{a}\right)^2 \right]^{\alpha_N} \left[1 - \left(\frac{r}{a}\right)^2 \right]^{\alpha_T} \qquad \alpha_N = \alpha_T = \frac{0.64 - 0.3A^{-1}}{2}$				
Confinement	$HHi \leq 0.7 [neoclassical] HHe \leq 0.7 [ITER_{98} - H] HH_{global} \leq 1.5$				

Engineering Assumptions - Neumeyer et al PPPL- 4165 (2006)

Center Stack Build	4cm inboard SOL + 10cm first wall
TF Inner Leg	Glidcop 87% IACS, water cooled 10m/s, T≤150°C, σ ≤130MPA
OH Solenoid	Glidcop 87% IACS, MIC, 10-20% center stack area, 30% fill factor, T \leq 200°C, $\sigma \leq$ 130MPA, single swing flux ~ 0.4-0.8Wb to ramp lp ~ 0.5- 1.0MA in 0.5s, He cooled during DT operation
NBI	PINBI E ≤ 120keV, J=144A/m²,NINBI E > 120keV, J=40A/m²
Neutron Flux Distribution	ARIES-ST model

Non-Linear Optimizer help to clarify tradeoffs, sensitivities, and leverages of near-term R&D

PPPL-4165 (Neumeyer et al)

Solver finds solution that optimizes an objective function within equality and non-equality constraints, by adjusting variables in

Tradeoffs:

- Any assumption
- A = 1.4 4.3
- $0.8 1.2x \beta_{N(no-wall)}$
- $q_{cyl} = 2.4 4.5$
- H_{98e} = 1 − 2
- MIC solenoid/iron core = 10-20% of CS cross section

Device example has moderate parameters including tritium consumption (Q4c)

W _L [MW/m²]	0.1	1.0	2.0	
R0 [m]		1.20		
Α	1.50			
kappa	3.07			
qcyl	4.6	3.7	3.0	
Bt [T]	1.13 2.18		18	
lp [MA]	3.4	8.2	10.1	
Beta_N	3.8		5.9	
Beta_T	0.14	0.18	0.28	
n _e [10 ²⁰ /m³]	0.43	1.05	1.28	
f _{BS}	0.58	0.49	0.50	
T _{avgi} [keV]	5.4	10.3	13.3	
T _{avge} [keV]	3.1	6.8	8.1	
HH98		1.5		
Q	0.50	2.5	3.5	
P _{aux-CD} [MW]	15	31	43	
E _{NB} [keV]	100	239	294	
P _{Fusion} [MW]	7.5	75	150	
T M height [m]	1.64			
T M area [m ²]	14			
Blanket A [m ²]	66			
F _{n-capture}	0.76			

ST goal for ITER era requires high duty factor, which drives enduring device features

Features to maximize up-time and minimize down-time

- Cu TF magnet post has high leverage (simplified, compact, reduced tritium use, modular, highly maintainable, etc.) but requires R&D
- MIC startup solenoid MgO radiation life under 14-MeV n?
- Continuous NBI –neutralizer particle control, divergence?
- Super-X divertor 5-6 times lower heat flux
- Minimizing disruptions how much stability margin?
- Extensive modularity extendable to normal A?
- Remote handling large modules, parallel straight motion
- Ex-shield boundary welds & hands on remains crucial
- Large design margins tradeoffs in size, cost, reliability
- R&D leverage which have more benefits to ST goal?

Machine Assembly Animation

Component Test Facility

Test Blanket Replacement Animation

Component Test Facility

